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Abstract

The dynamic solution of a multilayered orthotropic piezoelectric infinite hollow cylinder in the state of axisymmetric
plane strain is obtained. By the method of superposition, the solution is divided into two parts: one is quasi-static and
the other is dynamic. The quasi-static part is derived by the state space method, and the dynamic part is obtained by the
separation of variables method coupled with the initial parameter method as well as the orthogonal expansion tech-
nique. By using the obtained quasi-static and dynamic parts and the electric boundary conditions as well as the electric
continuity conditions, a Volterra integral equation of the second kind with respect to a function of time is derived,
which can be solved successfully by means of the interpolation method. The displacements, stresses and electric poten-
tials are finally obtained. The present method is suitable for a multilayered orthotropic piezoelectric infinite hollow cyl-
inder consisting of arbitrary layers and subjected to arbitrary axisymmetric dynamic loads. Numerical results are finally
presented and discussed.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The piezoelectric materials have been used widely in modern intelligent structural systems due to their
special electro-mechanical coupling effect (Rao and Sunar, 1994). For the homogeneous (single layer)
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piezoelectric media, Paul (1966) obtained the frequency equation of a piezoelectric cylindrical shell. The free
vibrations of the radially and axially polarized piezoelectric ceramic cylinders have been studied by
Adelman et al. (1975a,b). The electroelastic waves in solid and hollow cylinders have also been studied
(Paul and Raju, 1982; Shul�ga et al., 1984; Paul and Venkatesan, 1987). Ding et al. (1997a,b) further inves-
tigated the three-dimensional free vibrations of empty and compressible fluid filled piezoelectric cylindrical
shells, respectively. Lin (1998) analyzed the coupled vibration of a piezoelectric ceramic disk resonator.
Ding et al. (2003a) obtained the dynamic solution of a piezoelectric hollow cylinder for axisymmetric plane
strain problems. There are also a number of investigations on multilayered piezoelectric media. Kharouf
and Heyliger (1994) and Heyliger and Ramirez (2000) dealt with the free vibration problems of laminated
piezoelectric cylinders and discs, respectively. Chen (2000) considered the free vibration of (multilayered)
non-homogeneous piezoceramic hollow spheres by employing a separation formulation for displacements.
Chen (2001) developed a state-space method for free vibration analysis of laminated piezoelectric hollow
spheres. Li et al. (2001) studied the free vibration of a piezoelectric laminated cylindrical shell under hydro-
static pressure. The axisymmetric waves in layered piezoelectric rods have also been studied by Nayfeh et al.
(2000). Recently, the transient plane strain response of a multilayered isotropic elastic hollow cylinder has
been successfully solved by Yin and Yue (2002). Heyliger (1997) obtained the three-dimensional solution
for the static problem of a finite laminated piezoelectric cylinder with its ends simply supported. Siao
et al. (1994) investigated the frequency spectra of laminated piezoelectric cylinders. The transient responses,
a dynamic problem differing from the frequency spectra analysis, for a multilayered orthotropic piezoelec-
tric infinite hollow cylinder has not been reported.
In this paper, the analysis of homogeneous (single layered) piezoelectric hollow cylinders (Ding et al.,

2003a) is extended to solve the dynamic responses of the multilayered ones. The dynamic solution of a
multilayered orthotropic piezoelectric hollow cylinder in the state of axisymmetric plane strain is first di-
vided into two parts by the method of superposition: one is quasi-static and the other is dynamic. Then
by the state space method coupled with the initial parameter method, the static part and the dynamic part
can be obtained via operating the matrix of order two only. The present method provides an efficient way to
solve the dynamic problem for multilayered piezoelectric hollow cylinder because the static part is obtained
in an explicit form and the resulting eigenequation is very simple, which greatly facilitates solving for eigen-
roots quickly. By using the electric boundary conditions and electric continuity conditions, a Volterra inte-
gral equation of the second kind is derived, which can be solved successfully by the interpolation method
developed by Ding et al. (2003b) recently.
2. Basic equations and their non-dimensional forms

Consider an infinite piezoelectric hollow cylinder composed of n layers with inner radius r0 = a and outer
radius rn = b, as shown in Fig. 1. The first layer is the innermost and the nth layer is the outermost. The
inner and outer radii of the ith layer are denoted as ri�1 and ri, respectively.
We formulate the problem in the cylindrical coordinate system (r,h,z). For the axisymmetric plane

strain case, we have uðiÞh ¼ uðiÞz ¼ 0, uðiÞr ¼ uðiÞr ðr; tÞ for the components of displacement, and U(i) =
U(i)(r, t) for the component electric potential in the ith layer (ri�1 6 r 6 ri). The non-zero components of
strain are
cðiÞrr ¼ ouðiÞr
or

; cðiÞhh ¼ uðiÞr
r
: ð1Þ
If each layer characterizes material orthotropy, then the constitutive relations of the ith layer are (Adelman
et al., 1975a)
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Fig. 1. Geometry of a multilayered hollow cylinder.
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rðiÞ
hh ¼ cðiÞ11

uðiÞr
r

þ cðiÞ13
ouðiÞr
or

þ eðiÞ31
oUðiÞ

or
;

rðiÞ
zz ¼ cðiÞ12

uðiÞr
r

þ cðiÞ23
ouðiÞr
or

þ eðiÞ32
oUðiÞ

or
;

rðiÞ
rr ¼ cðiÞ13

uðiÞr
r

þ cðiÞ33
ouðiÞr
or

þ eðiÞ33
oUðiÞ

or
;

DðiÞ
rr ¼ eðiÞ31

uðiÞr
r

þ eðiÞ33
ouðiÞr
or

� eðiÞ33
oUðiÞ

or
;

ð2Þ
where rðiÞ
jj (j = r,h,z) and DðiÞ

rr are the components of stress and radial electric displacement, cðiÞjm
(j,m = 1,2,3), eðiÞ3j (j = 1,2,3) and eðiÞ33 are the elastic, piezoelectric and dielectric constants of the ith layer,
respectively. The equation of motion of the ith layer is
orðiÞ
rr

or
þ rðiÞ

rr � rðiÞ
hh

r
¼ qðiÞ o

2uðiÞr
ot2

; ð3Þ
where q(i) is the mass density of the ith layer. In the absence of free charge density, the charge equation of
electrostatics is
1

r
o

or
rDðiÞ

rr

� �
¼ 0: ð4Þ
The boundary conditions are
rð1Þ
rr ða; tÞ ¼ q0ðtÞ; rðnÞ

rr ðb; tÞ ¼ qnðtÞ; ð5aÞ

Uð1Þða; tÞ ¼ U0ðtÞ; UðnÞðb; tÞ ¼ UnðtÞ; ð5bÞ

where q0(t) and qn(t) are prescribed dynamic pressures acting on the inner and outer surfaces, respectively.
And U0(t) and Un(t) are known electric potentials applied on the inner and outer surfaces, respectively. The
continuity conditions at the interfaces can be expressed as
rðiþ1Þ
rr ðri; tÞ ¼ rðiÞ

rr ðri; tÞ; uðiþ1Þr ðri; tÞ ¼ uðiÞr ðri; tÞ ði ¼ 1; 2; . . . ; n� 1Þ; ð6aÞ

Uðiþ1Þðri; tÞ ¼ UðiÞðri; tÞ; Dðiþ1Þ
rr ðri; tÞ ¼ DðiÞ

rr ðri; tÞ ði ¼ 1; 2; . . . ; n� 1Þ: ð6bÞ

The initial conditions (t = 0) are
uðiÞr ðr; 0Þ ¼ U ðiÞ
0 ðrÞ; _uðiÞr ðr; 0Þ ¼ V ðiÞ

0 ðrÞ ði ¼ 1; 2; . . . ; nÞ; ð7Þ
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where U ðiÞ
0 ðrÞ and V ðiÞ

0 ðrÞ are known functions of the radial coordinate r and a dot over a quantity denotes
its partial derivative with respect to time t.
For convenience, the following non-dimensional quantities are introduced,
cðiÞ11P ¼ cðiÞ11
cð1Þ33

; cðiÞ12P ¼ cðiÞ12
cð1Þ33

; cðiÞ13P ¼ cðiÞ13
cð1Þ33

; cðiÞ23P ¼ cðiÞ23
cð1Þ33

; cðiÞ33P ¼ cðiÞ33
cð1Þ33

;

eðiÞ1 ¼ eðiÞ31ffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1Þ33 eð1Þ33

q ; eðiÞ2 ¼ eðiÞ32ffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1Þ33 eð1Þ33

q ; eðiÞ3 ¼ ei33ffiffiffiffiffiffiffiffiffiffiffiffiffi
cð1Þ33 eð1Þ33

q ; eðiÞ3 ¼ eðiÞ33
eð1Þ33

;

�qðiÞ ¼ qðiÞ

qð1Þ ; uðiÞ ¼ uðiÞr
b

; rðiÞ
j ¼

rðiÞ
jj

cð1Þ33
ðj ¼ r; h; zÞ; DðiÞ

r ¼ DðiÞ
rrffiffiffiffiffiffiffiffiffiffiffiffiffi

cð1Þ33 eð1Þ33

q ;

/ðiÞ ¼

ffiffiffiffiffiffiffi
eð1Þ33
cð1Þ33

vuut UðiÞ

b
; /0 ¼

ffiffiffiffiffiffiffi
eð1Þ33
cð1Þ33

vuut U0

b
; /n ¼

ffiffiffiffiffiffiffi
eð1Þ33
cð1Þ33

vuut Un

b
;

uðiÞ0 ¼ U ðiÞ
0

b
; vðiÞ0 ¼ V ðiÞ

0

cv
; p0 ¼

q0
cð1Þ33

; pn ¼
qn

cð1Þ33
;

n ¼ r
b
; ni ¼

ri
b

ði ¼ 0; 1; . . . ; nÞ; cv ¼

ffiffiffiffiffiffiffi
cð1Þ33
qð1Þ

s
; s ¼ cv

b
t:

ð8Þ
By virtue of Eq. (8), Eqs. (2)–(4) can be rewritten as
rðiÞ
h ¼ cðiÞ11P

uðiÞ

n
þ cðiÞ13P

ouðiÞ

on
þ eðiÞ1

o/ðiÞ

on
;

rðiÞ
z ¼ cðiÞ12P

uðiÞ

n
þ cðiÞ23P

ouðiÞ

on
þ eðiÞ2

o/ðiÞ

on
;

rðiÞ
r ¼ cðiÞ13P

uðiÞ

n
þ cðiÞ33P

ouðiÞ

on
þ eðiÞ3

o/ðiÞ

on
;

DðiÞ
r ¼ eðiÞ1

uðiÞ

n
þ eðiÞ3

ouðiÞ

on
� eðiÞ3

o/ðiÞ

on
;

ð9Þ

orðiÞ
r

on
þ rðiÞ

r � rðiÞ
h

n
¼ �qðiÞ o

2uðiÞ

os2
; ð10Þ

1

n
o

on
nDðiÞ

r

� �
¼ 0; ð11Þ
and the boundary conditions (5a) and (5b), the continuity conditions (6a) and (6b) as well as the initial
condition (7) can be rewritten as
rð1Þ
r ðn0; sÞ ¼ p0ðsÞ; rðnÞ

r ðnn; sÞ ¼ pnðsÞ; ð12aÞ

ð1Þ ðnÞ
/ ðn0; sÞ ¼ /0ðsÞ; / ðnn; sÞ ¼ /nðsÞ; ð12bÞ
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rðiþ1Þ
r ðni; sÞ ¼ rðiÞ

r ðni; sÞ; uðiþ1Þðni; sÞ ¼ uðiÞðni; sÞ ði ¼ 1; 2; . . . ; n� 1Þ; ð13aÞ

/ðiþ1Þðni; sÞ ¼ /ðiÞðni; sÞ; Dðiþ1Þ
r ðni; sÞ ¼ DðiÞ

r ðni; sÞ ði ¼ 1; 2; . . . ; n� 1Þ; ð13bÞ

uðiÞðn; 0Þ ¼ uðiÞ0 ðnÞ; _uðiÞðn; 0Þ ¼ vðiÞ0 ðnÞ ði ¼ 1; 2; . . . ; nÞ: ð14Þ

In Eq. (14) and hereafter, a dot over a quantity denotes its partial derivative with respect to the non-dimen-
sional time s.
3. Solution technique by the method of superposition

First, the first three equations in Eqs. (9) and (10) can be rewritten as
RðiÞ
h ¼ cðiÞ11Pu

ðiÞ þ cðiÞ13PruðiÞ þ eðiÞ1 r/ðiÞ;

RðiÞ
z ¼ cðiÞ12Pu

ðiÞ þ cðiÞ23PruðiÞ þ eðiÞ2 r/ðiÞ;

RðiÞ
r ¼ cðiÞ13Pu

ðiÞ þ cðiÞ33PruðiÞ þ eðiÞ3 r/ðiÞ;

ð15Þ

rRðiÞ
r � RðiÞ

h ¼ �qðiÞn2
o2uðiÞ

os2
; ð16Þ
where
RðiÞ
r ¼ nrðiÞ

r ; RðiÞ
h ¼ nrðiÞ

h ; RðiÞ
z ¼ nrðiÞ

z ; r ¼ n
o

on
: ð17Þ
By means of Eq. (17), Eqs. (12a) and (13a) can be rewritten as
Rð1Þ
r ðn0; sÞ ¼ n0p0ðsÞ; RðnÞ

r ðnn; sÞ ¼ nnpnðsÞ; ð18Þ

Rðiþ1Þ
r ðni; sÞ ¼ RðiÞ

r ðni; sÞ; uðiþ1Þðni; sÞ ¼ uðiÞðni; sÞ ði ¼ 1; 2; . . . ; n� 1Þ: ð19Þ

From Eq. (11), we have
DðiÞ
r ðn; sÞ ¼ 1

n
gðiÞðsÞ ði ¼ 1; 2; . . . ; nÞ; ð20Þ
where g(i)(s) is an unknown function with respect to the non-dimensional time s. From Eq. (20) and the
second equation in Eq. (13b), we have
gð1ÞðsÞ ¼ gð2ÞðsÞ ¼ � � � ¼ gðnÞðsÞ ¼ gðsÞ: ð21Þ

By utilizing Eqs. (20) and (21), we can obtain the following equation from the fourth equation in Eq. (9):
r/ðiÞ ¼ eðiÞ1
eðiÞ3

uðiÞ þ eðiÞ3
eðiÞ3

ruðiÞ � 1

eðiÞ3

gðsÞ
n

: ð22Þ
Substituting Eq. (22) into Eq. (15) yields
RðiÞ
h ¼ cðiÞ11Du

ðiÞ þ cðiÞ13DruðiÞ � eðiÞ1DgðsÞ;

RðiÞ
z ¼ cðiÞ12Du

ðiÞ þ cðiÞ23DruðiÞ � eðiÞ2DgðsÞ;

RðiÞ
r ¼ cðiÞ13Du

ðiÞ þ cðiÞ33DruðiÞ � eðiÞ3DgðsÞ;

ð23Þ
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where
cðiÞ11D ¼ cðiÞ11P þ
eðiÞ1 eðiÞ1
eðiÞ3

; cðiÞ12D ¼ cðiÞ12P þ
eðiÞ1 eðiÞ2
eðiÞ3

; cðiÞ13D ¼ cðiÞ13P þ
eðiÞ1 eðiÞ3
eðiÞ3

;

cðiÞ23D ¼ cðiÞ23P þ
eðiÞ2 eðiÞ3
eðiÞ3

; cðiÞ33D ¼ cðiÞ33P þ
eðiÞ3 eðiÞ3
eðiÞ3

;

eðiÞ1D ¼ eðiÞ1
eðiÞ3

; eðiÞ2D ¼ eðiÞ2
eðiÞ3

; eðiÞ3D ¼ eðiÞ3
eðiÞ3

:

ð24Þ
Then, according to the method of superposition (Berry and Naghdi, 1956), the displacement and stresses
can be assumed as
uðiÞ ¼ uðiÞs þ uðiÞd ; RðiÞ
r ¼ RðiÞ

rs þ RðiÞ
rd ; RðiÞ

h ¼ RðiÞ
hs þ RðiÞ

hd ; ð25Þ

where uðiÞs , RðiÞ

rs and RðiÞ
hs are the quasi-static solutions satisfying the following equations:
RðiÞ
hs ¼ cðiÞ11Du

ðiÞ
s þ cðiÞ13DruðiÞs � eðiÞ1DgðsÞ; RðiÞ

rs ¼ cðiÞ13Du
ðiÞ
s þ cðiÞ33DruðiÞs � eðiÞ3DgðsÞ; ð26Þ

rRðiÞ
rs � RðiÞ

hs ¼ 0; ð27Þ

Rð1Þ
rs ðn0; sÞ ¼ n0p0ðsÞ; RðnÞ

rs ðnn; sÞ ¼ nnpnðsÞ; ð28Þ

Rðiþ1Þ
rs ðni; sÞ ¼ RðiÞ

rs ðni; sÞ; uðiþ1Þs ðni; sÞ ¼ uðiÞs ðni; sÞ ði ¼ 1; 2; . . . ; n� 1Þ: ð29Þ

Substituting Eq. (25) into the first and third equations in Eq. (23), Eqs. (16), (18), (19) and (14), and

utilizing Eqs. (26)–(29), yields
RðiÞ
hd ¼ cðiÞ11Du

ðiÞ
d þ cðiÞ13DruðiÞd ; RðiÞ

rd ¼ cðiÞ13Du
ðiÞ
d þ cðiÞ33DruðiÞd ; ð30Þ

rRðiÞ
rd � RðiÞ

hd ¼ �qðiÞn2 €uðiÞd þ €uðiÞs
h i

; ð31Þ

Rð1Þ
rd ðn0; sÞ ¼ 0; RðnÞ

rd ðnn; sÞ ¼ 0; ð32Þ

Rðiþ1Þ
rd ðni; sÞ ¼ RðiÞ

rd ðni; sÞ; uðiþ1Þd ðni; sÞ ¼ uðiÞd ðni; sÞ ði ¼ 1; 2; . . . ; n� 1Þ; ð33Þ

uðiÞd ðn; 0Þ ¼ uðiÞ0 ðnÞ � uðiÞs ðn; 0Þ; _uðiÞd ðn; 0Þ ¼ vðiÞ0 ðnÞ � _uðiÞs ðn; 0Þ ði ¼ 1; 2; . . . ; nÞ: ð34Þ
4. Quasi-static solution

The second equation in Eq. (26) can be rewritten as
ruðiÞs ¼ aðiÞ1 uðiÞs þ aðiÞ2 RðiÞ
rs þ aðiÞ5 gðsÞ; ð35Þ
where
aðiÞ1 ¼ � cðiÞ13D
cðiÞ33D

; aðiÞ2 ¼ 1

cðiÞ33D
; aðiÞ5 ¼ eðiÞ3D

cðiÞ33D
: ð36Þ
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Substituting the first equation in Eq. (26) into Eq. (27) and utilizing Eq. (35), we obtain
rRðiÞ
rs ¼ aðiÞ3 uðiÞs þ aðiÞ4 RðiÞ

rs þ aðiÞ6 gðsÞ; ð37Þ

where
aðiÞ3 ¼ cðiÞ11D þ cðiÞ13Da
ðiÞ
1 ; aðiÞ4 ¼ cðiÞ13Da

ðiÞ
2 ; aðiÞ6 ¼ cðiÞ13Da

ðiÞ
5 � eðiÞ1D: ð38Þ
Eqs. (35) and (37) can be rewritten in a matrix form as
rfXðiÞðn; sÞg ¼ ½N ðiÞ�fXðiÞðn; sÞg þ fLðiÞggðsÞ; ð39Þ

where
XðiÞðn; sÞ
� �

¼
uðiÞs ðn; sÞ

RðiÞ
rs ðn; sÞ

( )
; ½N ðiÞ� ¼

aðiÞ1 aðiÞ2

aðiÞ3 aðiÞ4

24 35; fLðiÞg ¼
aðiÞ5

aðiÞ6

8<:
9=;: ð40Þ
The solution of Eq. (39) is
XðiÞðn; sÞ
� �

¼ ½T ðiÞðnÞ� XðiÞðni�1; sÞ
� �

þ GðiÞðnÞ
� �

gðsÞ
� �

; ð41Þ
where
½T ðiÞðnÞ� ¼ n
ni�1

� �½N ðiÞ�

; fGðiÞðnÞg ¼
Z n

ni�1

½T ðiÞðfÞ��1fLðiÞg 1
f
df; ð42Þ
in which [T(i)(n)] is a 2 · 2 matrix, and {G(i)(n)} is a column vector with two elements GðiÞ
1 ðn; sÞ and GðiÞ

2 ðn; sÞ.
In view of the first equation in Eq. (40), the continuity conditions in Eq. (29) can be rewritten as
Xðiþ1Þðni; sÞ
� �

¼ XðiÞðni; sÞ
� �

ði ¼ 1; 2; . . . ; n� 1Þ: ð43Þ
Setting n = ni in Eq. (41) and repeatedly using (43), we can derive the following equation:
XðiÞðni; sÞ
� �

¼ ½H ðiÞ� Xð1Þðn0; sÞ
� �

þ fM ðiÞggðsÞ ði ¼ 1; 2; . . . ; nÞ; ð44Þ
where
½H ðiÞ� ¼ bT ðiÞ
1

h i
; fM ðiÞg ¼

Xi

m¼1

bT ðiÞ
m

h i
GðmÞðnmÞ
� �

; bT ðiÞ
m

h i
¼
Ym
j¼i

T ðjÞðnjÞ
� �

ðm ¼ 1; 2; . . . ; iÞ; ð45Þ
in which [H(i)] is a 2 · 2 matrix and {M(i)} is a column vector with two elements M ðiÞ
1 ðsÞ and M ðiÞ

2 ðsÞ. Setting
i = n in Eq. (44) and noticing Eq. (28), gives
uðnÞs ðnn; sÞ

nnpnðsÞ

( )
¼

H ðnÞ
11 H ðnÞ

12

H ðnÞ
21 H ðnÞ

22

24 35 uð1Þs ðn0; sÞ

n0p0ðsÞ

( )
þ

M ðnÞ
1

M ðnÞ
2

8<:
9=;gðsÞ: ð46Þ
From the second equation in Eq. (46), we have
uð1Þs ðn0; sÞ ¼ nnpnðsÞ � H ðnÞ
22 n0p0ðsÞ �M ðnÞ

2 gðsÞ
h i.

H ðnÞ
21 : ð47Þ
Thus, Eq. (41) can be rewritten as
uðiÞs ðn; sÞ
RðiÞ

rs ðn; sÞ

( )
¼ T ðiÞ

11ðnÞ T ðiÞ
12ðnÞ

T ðiÞ
21ðnÞ T ðiÞ

22ðnÞ

" #
H ði�1Þ
11 H ði�1Þ

12

H ði�1Þ
21 H ði�1Þ

22

" #
uð1Þs ðn0; sÞ
n0p0ðsÞ

( )
þ M ði�1Þ

1

M ði�1Þ
2

( )
gðsÞ þ GðiÞ

1 ðnÞ
GðiÞ
2 ðnÞ

( )
gðsÞ

 !
:

ð48Þ
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Then the following equation from the first equation in Eq. (48) can be derived by utilizing Eq. (47),
uðiÞs ðn; sÞ ¼ f ðiÞ
1 ðnÞp0ðsÞ þ f ðiÞ

2 ðnÞpnðsÞ þ f ðiÞ
3 ðnÞgðsÞ; ð49Þ
where
f ðiÞ
1 ðnÞ ¼ n0 H ði�1Þ

12 � H ðnÞ
22

H ðnÞ
21

H ði�1Þ
11

" #
T ðiÞ
11ðnÞ þ H ði�1Þ

22 � H ðnÞ
22

H ðnÞ
21

H ði�1Þ
21

" #
T ðiÞ
12ðnÞ

( )
;

f ðiÞ
2 ðnÞ ¼ nn

H ðnÞ
21

H ði�1Þ
11 T ðiÞ

11ðnÞ þ H ði�1Þ
21 T ðiÞ

12ðnÞ
h i

;

f ðiÞ
3 ðnÞ ¼ T ðiÞ

11ðnÞ M ði�1Þ
1 �M ðnÞ

2

H ðnÞ
21

H ði�1Þ
11 þ GðiÞ

1 ðnÞ
" #

þ T ðiÞ
12ðnÞ M ði�1Þ

2 �M ðnÞ
2

H ðnÞ
21

H ði�1Þ
21 þ GðiÞ

2 ðnÞ
" #

:

ð50Þ
In the following, we will give the expressions of the elements in matrix [T(i)(n)]. According to Cayley–
Hamilton theorem (Deif, 1982), the first equation in Eq. (42) can be expressed as
½T ðiÞðnÞ� ¼ ðn=ni�1Þ½N
ðiÞ� ¼ EðiÞ

0 ðnÞIþ EðiÞ
1 ðnÞ½N ðiÞ�; ð51Þ
where I denotes a 2 · 2 unit matrix and EðiÞ
0 ðnÞ and EðiÞ

1 ðnÞ are determined by
ðn=ni�1Þk
ðiÞ
1 ¼ EðiÞ

0 ðnÞ þ kðiÞ
1 EðiÞ

1 ðnÞ; ðn=ni�1Þk
ðiÞ
2 ¼ EðiÞ

0 ðnÞ þ kðiÞ
2 EðiÞ

1 ðnÞ; ð52Þ
in which kðiÞ
1 and kðiÞ

2 are two eigenvalues of [N(i)], i.e.
kðiÞ
1 ¼ aðiÞ1 þ aðiÞ4

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðiÞ1 � aðiÞ4
h i2

þ 4aðiÞ2 aðiÞ3

r
2

;

kðiÞ
2 ¼ aðiÞ1 þ aðiÞ4

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðiÞ1 � aðiÞ4
h i2

þ 4aðiÞ2 aðiÞ3

r
2

:

ð53Þ
Thus from Eq. (52), we obtain
EðiÞ
0 ðnÞ ¼

1

kðiÞ
2 � kðiÞ

1

kðiÞ
2 ðn=ni�1Þk

ðiÞ
1 � kðiÞ

1 ðn=ni�1Þk
ðiÞ
2

h i
;

EðiÞ
1 ðnÞ ¼

1

kðiÞ
2 � kðiÞ

1

ðn=ni�1Þk
ðiÞ
2 � ðn=ni�1Þk

ðiÞ
1

h i
:

ð54Þ
5. Dynamic solution

Substituting Eq. (30) into Eq. (31) and utilizing Eq. (49), we have
o2uðiÞd
on2

þ 1
n
ouðiÞd
on

� l2i
n2

uðiÞd ¼ 1

c2i

o2uðiÞd
os2

þ f ðiÞ
1 ðnÞ d

2p0ðsÞ
ds2

þ f ðiÞ
2 ðnÞ d

2pnðsÞ
ds2

þ f ðiÞ
3 ðnÞ d

2gðsÞ
ds2

" #
; ð55Þ
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where
li ¼

ffiffiffiffiffiffiffiffi
cðiÞ11D
cðiÞ33D

vuut ; ci ¼

ffiffiffiffiffiffiffiffi
cðiÞ33D
�qðiÞ

s
: ð56Þ
By means of separation of variables method, uðiÞd ðn; sÞ can be assumed as
uðiÞd ðn; sÞ ¼
X1
m¼1

RðiÞ
m ðnÞXmðsÞ; ð57Þ
where Xm(s) is an undetermined function. According to the orthogonal expansion technique and noticing
the differential form at the left-hand side of Eq. (55), we know that RðiÞ

m ðnÞ must be a linear combination of
Jli

ðki
mnÞ and Y li

ðki
mnÞ. Here Jli(Æ) and Yli(Æ) are Bessel functions of the first and second kinds of order li, and
ki
m ¼ xm

ci
; ð58Þ
where xm is a series of undetermined positive real numbers.
Substituting Eq. (57) into the second equation in Eq. (30) yields
RðiÞ
rd ðn; sÞ ¼

X1
m¼1

rðiÞ
m ðnÞXmðsÞ; ð59Þ
where
rðiÞ
m ðnÞ ¼ cðiÞ33DrRðiÞ

m ðnÞ þ cðiÞ13DR
ðiÞ
m ðnÞ: ð60Þ
Substituting Eqs. (57) and (59) into Eqs. (32) and (33) gives
rð1Þ
m ðn0Þ ¼ 0; rðnÞ

m ðnnÞ ¼ 0 ðm ¼ 1; 2; . . . ;1Þ; ð61Þ

rðiþ1Þ
m ðniÞ ¼ rðiÞ

m ðniÞ; Rðiþ1Þ
m ðniÞ ¼ RðiÞ

m ðniÞ ðm ¼ 1; 2; . . . ;1; i ¼ 1; 2; . . . ; nÞ: ð62Þ

The above equation indicates that using the initial parameter method to construct RðiÞ

m ðnÞ and rðiÞ
m ðnÞ will

be beneficial to the introduction of the boundary conditions and the realization of the continuity conditions
at the interfaces. To do so, the following two principles should be applied: (1) RðiÞ

m ðnÞ must be the linear
combination of Jli

ðki
mnÞ and Y li

ðki
mnÞ; and (2) Eq. (60) must be satisfied. According to these two principles,

we can obtain
ZðiÞ
m ðnÞ

� �
¼ SðiÞðki

m; nÞ
� �

ZðiÞ
m ðni�1Þ

� �
; ð63Þ
where fZðiÞ
m ðni�1Þg is the so-called initial parameter, and
ZðiÞ
m ðnÞ

� �
¼ RðiÞ

m ðnÞ
rðiÞ
m ðnÞ

( )
; SðiÞðki

m; nÞ
� �

¼
SðiÞ
11ðki

m; nÞ SðiÞ
12ðki

m; nÞ
SðiÞ
21ðki

m; nÞ SðiÞ
22ðki

m; nÞ

" #
; ð64Þ
in which
SðiÞ
11ðki

m; nÞ ¼ PY ði; ki
m; ni�1ÞJli

ðki
mnÞ � PJ ði; ki

m; ni�1ÞY li
ðki

mnÞ
� �%

Ki;

SðiÞ
12ðki

m; nÞ ¼ Jli
ðki

mni�1ÞY li
ðki

mnÞ � Y li
ðki

mni�1ÞJli
ðki

mnÞ
� �%

Ki;

SðiÞ
21ðki

m; nÞ ¼ PY ði; ki
m; ni�1ÞPJ ði; ki

m; nÞ � PJ ði; ki
m; ni�1ÞPY ði; ki

m; nÞ
� �%

Ki;

SðiÞ
22ðki

m; nÞ ¼ Jli
ðki

mni�1ÞPY ði; ki
m; nÞ � Y li

ðki
mni�1ÞPJ ði; ki

m; nÞ
� �%

Ki;

ð65Þ
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and
Ki ¼ PY ði; ki
m; ni�1ÞJli

ðki
mni�1Þ � PJði; ki

m; ni�1ÞY li
ðki

mni�1Þ;
PJði; ki

m; nÞ ¼ cðiÞ33DrJli
ðki

mnÞ þ cðiÞ13DJli
ðki

mnÞ;
PY ði; ki

m; nÞ ¼ cðiÞ33DrY li
ðki

mnÞ þ cðiÞ13DY li
ðki

mnÞ:
ð66Þ
In view of the first equation in Eq. (64), Eq. (62) can be rewritten as
Zðiþ1Þ
m ðniÞ

� �
¼ ZðiÞ

m ðniÞ
� �

ði ¼ 1; 2; . . . ; n� 1Þ: ð67Þ
Setting n = ni in Eq. (63) and then repeatedly using Eq. (67), we can obtain the following equation:
ZðiÞ
m ðniÞ

� �
¼ ½QðiÞ� Zð1Þ

m ðn0Þ
� �

ði ¼ 1; 2; . . . ; nÞ; ð68Þ
where
½QðiÞ� ¼
Y1
j¼i

SðjÞðkj
m; njÞ

� �
; ð69Þ
in which [Q(i)] is a 2 · 2 matrix. If i = n, Eq. (68) then becomes
RðnÞ
m ðnnÞ
0

( )
¼

QðnÞ
11 QðnÞ

12

QðnÞ
21 QðnÞ

22

" #
Rð1Þ

m ðn0Þ
0

( )
: ð70Þ
From the second equation in Eq. (70), we have
QðnÞ
21 ¼ 0: ð71Þ
Eq. (71), a transcendental equation, is just the eigenequation, from which a series of positive real roots
xm (m = 1,2, . . .,1) can be obtained. After xm (m = 1,2, . . .,1), arranged in an ascending order, have been
obtained, Eq. (63) can be rewritten in the following form by virtue of Eq. (68):
RðiÞ
m ðnÞ

rðiÞ
m ðnÞ

( )
¼

SðiÞ
11ðki

mnÞ SðiÞ
12ðki

mnÞ
SðiÞ
21ðki

mnÞ SðiÞ
22ðki

mnÞ

" #
Qði�1Þ
11 Qði�1Þ

12

Qði�1Þ
21 Qði�1Þ

22

" #
Rð1Þ

m ðn0Þ
0

( )
: ð72Þ
Then from the first equation in Eq. (72), we derive
RðiÞ
m ðnÞ ¼ Qði�1Þ

11 SðiÞ
11ðki

mnÞ þ Qði�1Þ
21 SðiÞ

12ðki
mnÞ

h i
Rð1Þ

m ðn0Þ: ð73Þ
In Eq. (73), Rð1Þ
m ðn0Þ is a common constant for each layer, which can be taken as Rð1Þ

m ðn0Þ ¼ 1 in the cal-
culation. Thus RðiÞ

m ðnÞ is determined completely. Substituting Eq. (57) into Eq. (55) leads to
X1
m¼1

RðiÞ
m ðnÞ d

2XmðsÞ
ds2

þ x2
mXmðsÞ

& '
¼ �f ðiÞ

1 ðnÞ d
2p0ðsÞ
ds2

� f ðiÞ
2

d2pnðsÞ
ds2

� f ðiÞ
3

d2gðsÞ
ds2

: ð74Þ
By virtue of the orthogonal properties of Bessel functions, it is easy to verify that RðiÞ
m ðnÞ has the following

properties (Yin and Yue, 2002):
Xn
i¼1

�qðiÞ
Z ni

ni�1

nRðiÞ
m ðnÞRðiÞ

j ðnÞdn ¼ Jmdmj; ð75Þ
where dml is the Kronecker delta, and
Jm ¼ 1

2

Xn
i¼1

cðiÞ33D
x2

m

n
d

dn
RðiÞ

m ðnÞ
& '2

� l2i c
ðiÞ
33D

x2
m

RðiÞ
m ðnÞ

� �2 þ �qðiÞ nRðiÞ
m ðnÞ

� �2( )(((((
ni

ni�1

: ð76Þ
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Utilizing Eq. (75), we can derive the following equation from Eq. (74):
d2XmðsÞ
ds2

þ x2
mXmðsÞ ¼ qmðsÞ ðm ¼ 1; 2; . . . ;1Þ; ð77Þ
where
qmðsÞ ¼ q1mðsÞ þ I3m€gðsÞ; q1mðsÞ ¼ I1m€p0ðsÞ þ I2m€pnðsÞ

I1m ¼ �
Xn
i¼1

�qðiÞ
Z ni

ni�1

nf ðiÞ
1 ðnÞRðiÞ

m ðnÞdn
,

Jm;

I2m ¼ �
Xn
i¼1

�qðiÞ
Z ni

ni�1

nf ðiÞ
2 ðnÞRðiÞ

m ðnÞdn
,

Jm;

I3m ¼ �
Xn
i¼1

�qðiÞ
Z ni

ni�1

nf ðiÞ
3 ðnÞRðiÞ

m ðnÞdn
,

Jm:

ð78Þ
The solution of Eq. (77) is
XmðsÞ ¼ Xmð0Þ cosxms þ
_Xmð0Þ
xm

sinxms þ 1

xm

Z s

0

qmðpÞ sinxmðs � pÞdp: ð79Þ
Utilizing Eqs. (49), (57) and (34), we have
X1
m¼1

RðiÞ
m ðnÞXmð0Þ ¼ uðiÞ0 ðnÞ � f ðiÞ

1 ðnÞp0ð0Þ � f ðiÞ
2 ðnÞpnð0Þ � f ðiÞ

3 ðnÞgð0Þ;

X1
m¼1

RðiÞ
m ðnÞ _Xmð0Þ ¼ vðiÞ0 ðnÞ � f ðiÞ

1 ðnÞ _p0ð0Þ � f ðiÞ
2 ðnÞ _pnð0Þ � f ðiÞ

3 ðxiÞ _gð0Þ:
ð80Þ
By using Eq. (75), we can obtain Xm(0) and _Xmð0Þ from Eq. (80),
Xmð0Þ ¼ I1mp0ð0Þ þ I2mpnð0Þ þ I3mgð0Þ þ I4m;
_Xmð0Þ ¼ I1m _p0ð0Þ þ I2m _pnð0Þ þ I3m _gð0Þ þ I5m;

ð81Þ
where
I4m ¼
Xn
i¼1

�qðiÞ
Z ni

ni�1

nuðiÞ0 ðnÞRðiÞ
m ðnÞdn

,
Jm; I5m ¼

Xn
i¼1

�qðiÞ
Z ni

ni�1

nvðiÞ0 ðnÞRðiÞ
m ðnÞdn

,
Jm: ð82Þ
Notice that €gðpÞ is involved in qm(p) as shown in the first equation in Eq. (78). We apply the integration-
by-parts formula to perform the integration of the term involving €gðpÞ in Eq. (79) and derive
Z s

0

€gðpÞ sinxmðs � pÞdp

¼ � _gð0Þ sinxms � gð0Þxm cosxms þ xmgðsÞ � x2
m

Z s

0

gðpÞ sinxmðs � pÞdp: ð83Þ
Then the following equation can be obtained from Eq. (79),
XmðsÞ ¼ X1mðsÞ þ I3mgðsÞ � I3mxm

Z s

0

gðpÞ sinxmðs � pÞdp; ð84Þ
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where
X1mðsÞ ¼ Xmð0Þ cosxms þ
_Xmð0Þ
xm

sinxms þ 1

xm

Z s

0

q1mðpÞ sinxmðs � pÞdp

� I3m
xm

½ _gð0Þ sinxms þ gð0Þxm cosxms�: ð85Þ
Now we will determine g(0), _gð0Þ and g(s) by means of the electric boundary condition (12b) and the
electric potential continuity condition (13b). We first rewrite Eq. (22) as
o/ðiÞ

on
¼ eðiÞ1

eðiÞ3

uðiÞ

n
þ eðiÞ3

eðiÞ3

ouðiÞ

on
� 1

eðiÞ3

gðsÞ
n

; ð86Þ
in which u(i) can be obtained by virtue of Eqs. (25), (49) and (57) as follows:
uðiÞðn; sÞ ¼
X1
m¼1

RðiÞ
m ðnÞXmðsÞ þ f ðiÞ

1 ðnÞp0ðsÞ þ f ðiÞ
2 ðnÞpnðsÞ þ f ðiÞ

3 ðnÞgðsÞ: ð87Þ
In view of Eqs. (12b) and (13b), we integrate Eq. (87) at the interval [ni�1,ni] (i = 1,2, . . .,n) and then
summarize them. The following equation is then derived:
w1ðsÞ ¼ K1gðsÞ þ
X1
m¼1

K2mXmðsÞ; ð88Þ
where
w1ðsÞ ¼ /nðsÞ � /0ðsÞ � K3p0ðsÞ � K4pnðsÞ;

K1 ¼
Xn
i¼1

eðiÞ1
eðiÞ3

Z ni

ni�1

f ðiÞ
3 ðnÞ
n

dn þ eðiÞ3
eðiÞ3

f ðiÞ
3 ðniÞ � f ðiÞ

3 ðni�1Þ
h i

� 1

eðiÞ3
ln

ni

ni�1

� �( )
;

K2m ¼
Xn
i¼1

eðiÞ1
eðiÞ3

Z ni

ni�1

RðiÞ
m ðnÞ
n

dn þ eðiÞ3
eðiÞ3

RðiÞ
m ðniÞ � RðiÞ

m ðni�1Þ
� �( )

;

K3 ¼
Xn
i¼1

eðiÞ1
eðiÞ3

Z ni

ni�1

f ðiÞ
1 ðnÞ
n

dn þ eðiÞ3
eðiÞ3

f ðiÞ
1 ðniÞ � f ðiÞ

1 ðni�1Þ
h i( )

;

K4 ¼
Xn
i¼1

eðiÞ1
eðiÞ3

Z ni

ni�1

f ðiÞ
2 ðnÞ
n

dn þ eðiÞ3
eðiÞ3

f ðiÞ
2 ðniÞ � f ðiÞ

2 ðni�1Þ
h i( )

:

ð89Þ
From Eq. (88), we have
_w1ðsÞ ¼ K1 _gðsÞ þ
X1
m¼1

K2m
_XmðsÞ: ð90Þ
If s = 0, by means of Eq. (81), we can determine g(0) and _gð0Þ from Eqs. (88) and (90),
gð0Þ ¼ w1ð0Þ �
P1

m¼1K2m½I1mp0ð0Þ þ I2mpnð0Þ þ I4m�
K1 þ

P1
m¼1K2mI3m

;

_gð0Þ ¼
_w1ð0Þ �

P1
m¼1K2m½I1m _p0ð0Þ þ I2m _pnð0Þ þ I5m�

K1 þ
P1

m¼1K2mI3m
:

ð91Þ
Substituting Eq. (91) into Eqs. (81) and (85), the constants Xm(0) and _Xmð0Þ and the function X1m(s)
become known. Then substituting Eq. (84) into Eq. (88) leads to
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wðsÞ ¼ N 1gðsÞ þ
X1
m¼1

N 2m

Z s

0

gðpÞ sinxmðs � pÞdp; ð92Þ
where
wðsÞ ¼ w1ðsÞ �
X1
m¼1

K2mX1mðsÞ;

N 1 ¼ K1 þ
X1
m¼1

K2mI3m; N 2m ¼ �xmK2mI3m:

ð93Þ
It is noted that Eq. (92) is a Volterra integral equation of the second kind (Kress, 1989), of which ana-
lytical solutions can be obtained only for some special cases. Generally, numerical methods should often be
adopted. Recently, we have constructed a recursive formula by which Eq. (92) can be solved efficiently and
quickly (Ding et al., 2003b). After g(s) is obtained, the displacement, electric potential and stresses can then
be completely determined.
6. Numerical results and analysis

Example 1. In this example, we consider a homogeneous piezoelectric infinite hollow cylinder, of which an
analytical solution has been obtained by Ding et al. (2003a). The material is taken as PZT-4 (Table 1). In
the demonstration, we divide the cylinder into five layers (n = 5) when using the present method. The non-
dimensional inner radius, the radii of the interfaces as well as the outer radius are n0 = 0.5, n1 = 0.625,
n2 = 0.75, n3 = 0.875, n4 = 1.0, respectively. The hollow cylinder, which is at rest at t = 0, i.e. uðiÞ0 ðnÞ ¼ 0,
vðiÞ0 ðnÞ ¼ 0 (i = 1,2, . . .,n), is subjected to a sudden constant pressure at the inner surface. The boundary
conditions are
p0ðsÞ ¼ HðsÞ; p5ðsÞ ¼ 0; ð94aÞ

/ð1Þðn0; sÞ ¼ 0; /ð5Þðn5; sÞ ¼ 0; ð94bÞ
where H(Æ) denotes the Heaviside function.
1
, piezoelectric and dielectric constants of piezoelectric materials

al constant Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

PZT-4 BaTiO3 PZT-5H BaTiO3 PZT-4

a) 139.0 150.0 126.0 150.0 139.0
a) 77.8 66.0 79.5 66.0 77.8
a) 74.3 66.0 84.1 66.0 74.3
a) 74.3 66.0 84.1 66.0 74.3
a) 115.0 146.0 117.0 146.0 115.0
m2) �5.2 �4.35 �6.5 �4.35 �5.2
m2) �5.2 �4.35 �6.5 �4.35 �5.2
m2) 15.1 17.5 23.3 17.5 15.1
0�9 F/m) 5.62 15.04 13.0 15.04 5.62
3 kg/m3) 7.5 5.7 7.5 5.7 7.5
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Fig. 2. Time histories of hoop stress rh at different locations in the homogeneous piezoelectric hollow cylinder.
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The time histories of the non-dimensional hoop stresses at the inner surface (n = 0.5), middle surface
(n = 0.75), as well as outer surface (n = 1.0) are shown in Fig. 2. The results agree well with those presented
in Ding et al. (2003a). Thus, the validity of the present solution is clarified.

Example 2. Now we consider the dynamic responses of a five-layer infinite hollow cylinder (n = 5) with
n0 = 0.5, n1 = 0.6, n2 = 0.7, n3 = 0.8, n4 = 0.9 and n5 = 1.0, respectively, subjected to a sudden constant
pressure at the inner surface. The material constants of each layer are listed in Table 1 (Adelman et al.,
1975a; Kharouf and Heyliger, 1994). The boundary conditions as well as other parameters all are the same
as those in Example 1.
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The time histories of the radial stress rr at the inner and outer surfaces as well as at each interface are
shown in Fig. 3. From the curves, we find that the non-dimensional radial stress at the inner surface keeps
�1 while that at the outer surface keeps zero. Thus, the calculated results satisfy the prescribed mechanical
boundary conditions, thus the correctness of the numerical results is clarified in this respect.
Figs. 4 and 5 depict the time histories of the hoop stress rh at the inner and outer surfaces of each layer,

respectively. It can be seen that in the same layer, the amplitude of rh at the inner surface is always larger
than that at the outer surface.
At the initial phase, the distributions of non-dimensional radial stresses rr at s = 0.05, 0.15, 0.25, 0.35, 0.4,

0.5, 0.6 and 0.7 in the five-layer piezoelectric hollow cylinder are shown in Fig. 6a and b. It is clearly seen that
the stress wave generates just when a constant pressure suddenly acts on the inner surface and then propagates
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from the inner to the outer.When they arrive at the outer surface, it is reflected backward and propagates along
the opposite direction. We also find that when the stress wavefront arrives, it causes a strong discontinuity in
the stress. Fig. 7a and b depict the distributions of non-dimensional hoop stresses rh at s = 0.05, 0.15, 0.25,
0.35, 2.0, 4.0 and 8.0, respectively. In Fig. 7a and b, the discontinuity of the hoop stress also appears when the
stress wavefront arrives. We also notice that the hoop stress always jumps at each interface.
The distributions of the non-dimensional electric potential / at different times (s = 0.25, 0.5 and 1.0) are

shown in Fig. 8. From the curves, we find that the calculated electric potentials at the inner and outer
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surfaces both are zero, which are the right electric boundary conditions. The correctness of the numerical
results is further clarified.
7. Conclusions

In this paper, the principle of superposition is successfully applied to analyze the axisymmetric plane
strain dynamic problems for multilayered orthotropic piezoelectric infinite hollow cylinder. The quasi-static
solution is obtained in an explicit form by using the state space method. The derivation procedure is com-
pleted via operating the matrix of order two only in spite of the layer number. While in deriving the dy-
namic solution, the initial parameter method is introduced to deal with the continuity condition at the
interfaces, and the eigenequation is obtained in a very concise form also via operating the matrix of order
two only, from which the eigenvalues can be obtained quickly with a high accuracy.
From Figs. 3–5, we can clearly see the oscillations of radial and hoop stresses in a five-layer orthotropic

piezoelectric infinite hollow cylinder. The phenomena can be well explained by the wave motion viewpoint:
when a constant pressure suddenly applied onto the inner surface, the stress waves are then generated and
propagate from the inner to the outer. When they arrive at the outer surface (the interfaces), the reflected
(and transmitted) waves are further generated. It is the multiple reflection and transmission of the stress
waves that leads to the stresses oscillating in the multilayered hollow cylinder. It should be mentioned here
that the numerical results for a five-layer hollow cylinder in Example 2 have been obtained very quickly in
our calculation. So, the present method provides an effective way for analyzing the transient responses of
the laminated infinite piezoelectric hollow cylinders.
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