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Abstract

The dynamic solution of a multilayered orthotropic piezoelectric infinite hollow cylinder in the state of axisymmetric
plane strain is obtained. By the method of superposition, the solution is divided into two parts: one is quasi-static and
the other is dynamic. The quasi-static part is derived by the state space method, and the dynamic part is obtained by the
separation of variables method coupled with the initial parameter method as well as the orthogonal expansion tech-
nique. By using the obtained quasi-static and dynamic parts and the electric boundary conditions as well as the electric
continuity conditions, a Volterra integral equation of the second kind with respect to a function of time is derived,
which can be solved successfully by means of the interpolation method. The displacements, stresses and electric poten-
tials are finally obtained. The present method is suitable for a multilayered orthotropic piezoelectric infinite hollow cyl-
inder consisting of arbitrary layers and subjected to arbitrary axisymmetric dynamic loads. Numerical results are finally
presented and discussed.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The piezoelectric materials have been used widely in modern intelligent structural systems due to their
special electro-mechanical coupling effect (Rao and Sunar, 1994). For the homogeneous (single layer)
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piezoelectric media, Paul (1966) obtained the frequency equation of a piezoelectric cylindrical shell. The free
vibrations of the radially and axially polarized piezoelectric ceramic cylinders have been studied by
Adelman et al. (1975a,b). The electroelastic waves in solid and hollow cylinders have also been studied
(Paul and Raju, 1982; Shul’ga et al., 1984; Paul and Venkatesan, 1987). Ding et al. (1997a,b) further inves-
tigated the three-dimensional free vibrations of empty and compressible fluid filled piezoelectric cylindrical
shells, respectively. Lin (1998) analyzed the coupled vibration of a piezoelectric ceramic disk resonator.
Ding et al. (2003a) obtained the dynamic solution of a piezoelectric hollow cylinder for axisymmetric plane
strain problems. There are also a number of investigations on multilayered piezoelectric media. Kharouf
and Heyliger (1994) and Heyliger and Ramirez (2000) dealt with the free vibration problems of laminated
piezoelectric cylinders and discs, respectively. Chen (2000) considered the free vibration of (multilayered)
non-homogeneous piezoceramic hollow spheres by employing a separation formulation for displacements.
Chen (2001) developed a state-space method for free vibration analysis of laminated piezoelectric hollow
spheres. Li et al. (2001) studied the free vibration of a piezoelectric laminated cylindrical shell under hydro-
static pressure. The axisymmetric waves in layered piezoelectric rods have also been studied by Nayfeh et al.
(2000). Recently, the transient plane strain response of a multilayered isotropic elastic hollow cylinder has
been successfully solved by Yin and Yue (2002). Heyliger (1997) obtained the three-dimensional solution
for the static problem of a finite laminated piezoelectric cylinder with its ends simply supported. Siao
et al. (1994) investigated the frequency spectra of laminated piezoelectric cylinders. The transient responses,
a dynamic problem differing from the frequency spectra analysis, for a multilayered orthotropic piezoelec-
tric infinite hollow cylinder has not been reported.

In this paper, the analysis of homogeneous (single layered) piezoelectric hollow cylinders (Ding et al.,
2003a) is extended to solve the dynamic responses of the multilayered ones. The dynamic solution of a
multilayered orthotropic piezoelectric hollow cylinder in the state of axisymmetric plane strain is first di-
vided into two parts by the method of superposition: one is quasi-static and the other is dynamic. Then
by the state space method coupled with the initial parameter method, the static part and the dynamic part
can be obtained via operating the matrix of order two only. The present method provides an efficient way to
solve the dynamic problem for multilayered piezoelectric hollow cylinder because the static part is obtained
in an explicit form and the resulting eigenequation is very simple, which greatly facilitates solving for eigen-
roots quickly. By using the electric boundary conditions and electric continuity conditions, a Volterra inte-
gral equation of the second kind is derived, which can be solved successfully by the interpolation method
developed by Ding et al. (2003b) recently.

2. Basic equations and their non-dimensional forms

Consider an infinite piezoelectric hollow cylinder composed of n layers with inner radius o = a and outer
radius r, = b, as shown in Fig. 1. The first layer is the innermost and the nth layer is the outermost. The
inner and outer radii of the ith layer are denoted as r,_; and r;, respectively.

We formulate the problem in the cylindrical coordinate system (r,0,z). For the axisymmetric plane
strain case, we have u) =ul) =0, ul) = u)(r,1) for the components of displacement, and @& =
@'(r, 1) for the component electric potential in the ith layer (r,_; < r < r;). The non-zero components of
strain are

@u,(,i) 0 u®

0 — U 1
Vrr or ’ 700 P ( )

If each layer characterizes material orthotropy, then the constitutive relations of the ith layer are (Adelman
et al., 1975a)
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layer 1
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Fig. 1. Geometry of a multilayered hollow cylinder.
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where a() = r 0,z) and D are the components of stress and radial electric displacement, c()
(ym=1, 2 ,3), e3 (G=12,3) and 933) are the elastic, piezoelectric and dielectric constants of the ith layer
respectlvely The equation of motion of the ith layer is

i i (1) 2. (i
aaf‘r) + o-f’r) — O-(')H _ p(l) a u£'> (3)
or r or’

where p'” is the mass density of the ith layer. In the absence of free charge density, the charge equation of
electrostatics is

120

S [p] =0 )
The boundary conditions are

ol (at) = qo0), oY (b.1) = q,(1), (Sa)

oW (a, 1) = dy(1), O (b, 1) = @,(1), (5b)

where ¢o(?) and ¢,(t) are prescribed dynamic pressures acting on the inner and outer surfaces, respectively.
And @(¢) and &,(7) are known electric potentials applied on the inner and outer surfaces, respectively. The
continuity conditions at the interfaces can be expressed as

d "V (rt) = aD(ryt), w0 =u(ryt)  (i=1,2,...,n—1); (6a)
DD (1) = @V (1, 1), DU (ry 1) = D,(,?(r,-,t) i=1,2,....,n—1). (6b)
The initial conditions (¢ = 0) are

u?(r,0) = U, 0=V  (i=1,2,...,n), (7)
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where U(()i) (r) and V((f )(r) are known functions of the radial coordinate  and a dot over a quantity denotes

its partial derivative with respect to time 7.
For convenience, the following non-dimensional quantities are introduced,

(1) (1) (@) (@) (@)
ORI PO ] PRGN k] RO 1] 0 _ %3
11P — (1) 12P — (1)° 13P (1)° 23P 1) 33p (1)
C33 C33 C33 C33 C33
(@) (1) (@)
N — __Ca o — €3 ’ &) = €33 &0 2;3)7
(1) (1) (1) (1) (1) (1)
€33 €33 C33 833 C33833 &3
(@) (@) @) 0]
S p i ur i g i Drr
POl W=t =T G=ra), DY =
3 C33 €33
(8)
(1) i
50 &y 9V _
c(l) b ) 0
33
o _ Uy o _ V0
0 b ) 0 C ’
_r _Nioi—o1 _ C(313) _ G
f 57 51_3 (l_ ) 7"'7n)a Cy = W7 T_Zt'
By virtue of Eq. (8), Egs. (2)—(4) can be rewritten as
. O © oul 5 0l
G _ U () ou (i)
Oy = Crip z +Cizp ¢ +e o
_ ) ) 5 oY)
n_ ) U () ou 0]
Ug) —512P?+023P oc € o o)
i i ()
g0 o 09
r 13P é 33p aé 3 aé )
_ Su® - ould) ) 0"
DI — ¥ u- + ¥ _
7 1 f 3 aé 3 aé )
) G _ g0 2,,00)
0o, L0 o 50 ou ’ (10)
o¢ ¢ or?
10 )
Z_—[ep®D] =0 11

and the boundary conditions (5a) and (5b), the continuity conditions (6a) and (6b) as well as the initial
condition (7) can be rewritten as

oo, D) =po(0)s 0" (& 1) = pu(0), (12a)

¢V (1) = do(r), 9" (En 1) = (1), (12b)
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6<l+l)(§n T) = wai)(éia T>7 u(iJrl)(éia T) = u(i)(éhr) (l = 1727 Y 1)7 (133')
oV 0) = ¢V (E, 1), DIV, 1) =DP(E, ) (i=1,2,...,n—1), (13b)
u(E,0) =ul’ (), W0 =d0(&)  (i=1,2,...,n). (14)

In Eq. (14) and hereafter, a dot over a quantity denotes its partial derivative with respect to the non-dimen-
sional time 7.

3. Solution technique by the method of superposition

First, the first three equations in Eqgs. (9) and (10) can be rewritten as
ZE)) = cllPu '+ cm,Vu + e(li)v‘l”(i)v
>0 = ¢ 2Pu RO vl (15)
z0 = 01313” )+ cw,Vu egi)V(;’)(i),

VED _ 50— 50 @;Zf) 7 (16)
where

R - B3 (17)
By means of Eq. (17), Egs. (12a) and (13a) can be rewritten as

(&) = Gpo(r), (1) = Ep(0), (18)

SENE 1) = 29(¢E,), u(E D) =u(EL) ((=1,2,..,n—1). (19)
From Eq. (11), we have

DY (& 1) :énm(r) i=1,2,...,n), (20)

where #(t) is an unknown function with respect to the non-dimensional time t. From Eq. (20) and the
second equation in Eq. (13b), we have

1) =1 (0) = - = (@) = n(z). e1)
By utilizing Egs. (20) and (21), we can obtain the following equation from the fourth equation in Eq. (9):
(i) (i)
0 _e 0, % g,n_ L@
Vo' = 0 u + 0 Vu T (22)
3 3 3

Substituting Eq. (22) into Eq. (15) yields
Zg) = 011)0” + 013Dv“ - egiz))’?(f)a
29 = 012>D” + 023DVu - egiz))’?(f)a (23)

s = 0130“( + ‘733DV” giz))’?(f)’

r
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where
(@) ,(0) (@) () (@) ()
O _ o & n _ .0 b n _ 0, 48
Ciip =C1ip +— Clap = Ciop+— Cisp =Ci3p +— 7
&5 &5 &5
(i) (i) (@) (i)
O _ 0, 64 0n _ 0 , 48
Cup = Cp+ 5 Cyp = Cxp T (24)
& &
) (@) i)
I S R S ) R
D=0 = 0 )
& & &3

Then, according to the method of superposition (Berry and Naghdi, 1956), the displacement and stresses
can be assumed as

U R N R (RE A I N5 25)
where u(?, Zx) and ng are the quasi-static solutions satisfying the following equations:

Z‘E)ls) = C(1i1>D“§i) + ngavuﬁi) - e(l?)’?(f)a Zﬁ? = cgis)D”.Si) + CQDV“ASI‘) - eg%r](r), (26)

vzl — 50—, (27)

2 (G0, = Gpo(r), (1) = Epa(D), (28)

SN 1) = 29(E, 1), ult(E 1) = uD (1) (i=1,2,...,n—1). (29)

Substituting Eq. (25) into the first and third equations in Eq. (23), Egs. (16), (18), (19) and (14), and
utilizing Eqs. (26)—29), yields

o = ciipuy + Vi, I = clipuy + iV (30)
vzl - 5 = g0 [il) + il (31)
5 -0 5 -0 32

rd (fo, T) ’ rd (éna T) ) ( )
Z,(-fjl)(ihr) :Zig(éivr)v ufj+l)(éiar) :u?(ih‘c) (l: 1727"'5717 1)7 (33)

(i) 0) = () —uD(e0 - (i) 0) = (1) —aDeeo i—1.2 34
g (£,0) =uy (&) —u(&,0), 4y (E,0) =0y () =" (&,0)  (i=1,2,....n). (34)

4. Quasi-static solution

The second equation in Eq. (26) can be rewritten as

Vul = a"ul + a0 1 o'y (v), )
where
0 g
; c i 1 ! ¢
o ==, @)= A= a

C33p C33p C33p
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Substituting the first equation in Eq. (26) into Eq. (27) and utilizing Eq. (35), we obtain

V0 = a{u + ) £ + al'n(x), (37)
where
) =l el ) = iyl al) = i) ) o8)

Eqgs. (35) and (37) can be rewritten in a matrix form as

VIXO(E 1)} = INOHXO (1)} + {L9n(2), (39)
where
ul (& 1) PACEAC) a
CITIES D Bl o= |7 my=J> 4
e {zﬁf;)(é,r)}’ " Lé” ai”]’ e {aé”} “
The solution of Eq (39) is
(X0} = TP ON{X (&0} + {GY(O) In()], (41)
where
[N(i)] 13
- () e [ o (42)

in which [T(¢)]is a 2 x 2 matrix, and {G?”(&)} is a column vector with two elements G\ (£, 7) and G\ (¢, 7).
In view of the first equation in Eq. (40), the continuity conditions in Eq. (29) can be rewritten as

(X0} = (X&) (=12,...,0-1). *3)
Setting ¢ = ¢&; in Eq. (41) and repeatedly using (43), we can derive the following equation:
X9 0} =HXY (o, 0} + M) (=1,2,....n), (44)
where
o= (7] ey =Y (e, [ =T10ve) =120, )
m=1 J=i

in which [H”]is a 2 x 2 matrix and {M"} is a column vector with two elements M'” () and M (z). Setting
i=nin Eq. (44) and noticing Eq. (28), gives

W&\ [HE HY | [ uV(E,) My
{ V - T (). (46)
&pa(T) 7Y =Y | &p(r) My
From the second equation in Eq. (46), we have
”gl)(foﬂ) = |:§npn( ) — 22 50170 2 ’7 }/HZI (47)

Thus, Eq. (41) can be rewritten as

W&o | _ @ @ ([E B | [uln ) | [ u G/'(¢)
e~ L e (L 2 (o U Jro (G )
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Then the following equation from the first equation in Eq. (48) can be derived by utilizing Eq. (47),

W (&,7) = [7(E)po) + A (Epa(0) + £ (En(x), (49)

where

1) = éo{ [HY;” g HY; ] T1(8) +

-y HY o]
H, _H(W)HZI T1(8) ¢,

21 21
i én i i— i
A& = [T + T, (50)
21

A A R Y, OR .
i i i—1 i—1 i
ANE =17 [Mi -+ 60

21

(n)

i i— M i— i
e | M 4 o |

(n)
21

In the following, we will give the expressions of the elements in matrix [7)(¢)]. According to Cayley—
Hamilton theorem (Deif, 1982), the first equation in Eq. (42) can be expressed as

i @ i i i
[70@)] = (/&)™ = EY @1+ BV (OINY, (51)
where I denotes a 2 x 2 unit matrix and E(()l )(¢) and EY)(@ are determined by

/e )t = ED@) + EN@),  (¢/e)" = EQ@E) + AVED @), (52)

in which }v(l’) and ig’j are two eigenvalues of [N'"], i.e.

2
. ) @ _ 0 (@) ()
A(i) a(lz) —&—af{) \/[al a4} +4a,’ a;
A= —

2 2 (53)
2
. . (i) (i) (@ (@)
0 _ a(ll) —&—af{) .\ \/[al —a, } +4a,’ a;
2 2 2 '
Thus from Eq. (52), we obtain
i 1 i Y i PN
E(E) = s [ €/ = A E/a)" ],
2 1 1 (54)
E (@) = S (/60" — (e/a].
Ay = 4
5. Dynamic solution
Substituting Eq. (30) into Eq. (31) and utilizing Eq. (49), we have
G T N L. Y G L G I L 55)
or "eag @Y T alee T YW TS e S g |
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where
(i) ()
c c
U= —<11.1)D , c = jfl)D . (56)
C33p p

By means of separation of variables method, ufj)(f, 7) can be assumed as
4 (&) =) R(OQ(0), (57)

where Q,,(7) is an undetermined function. According to the orthogonal expansion technique and noticing
the differential form at the left-hand side of Eq. (55), we know that R (&) must be a linear combination of
Jy (k&) and Y, (k,,&). Here J,(-) and Y, () are Bessel functions of the first and second kinds of order y;, and
.o
ko= 58
m ¢ ’ ( )
where w,, is a series of undetermined positive real numbers.
Substituting Eq. (57) into the second equation in Eq. (30) yields

(&)= aW(&)Qu(x), (59)
m=1
where
al)(&) = cpVRY (&) + ci3pRY (). (60)
Substituting Egs. (57) and (59) into Egs. (32) and (33) gives
ngl)(éO)zov O-E:)(én):() (m: 1323"'700)7 (61)
cit(E) =aW(&), RUTD(E) = RY(¢) (m=1,2,...,00; i=1,2,...,n). (62)

The above equation indicates that using the initial parameter method to construct R (¢) and ¢ (&) will
be beneficial to the introduction of the boundary conditions and the realization of the continuity conditions
at the interfaces. To do so, the following two principles should be applied: (1) R\ (&) must be the linear
combination of J,, (k! &) and Y, (k| £); and (2) Eq. (60) must be satisfied. According to these two principles,
we can obtain

{Z0(&)} = [SV(K,. )] {Zz (&)}, (63)

where {Z\)(¢,_))} is the so-called initial parameter, and
: R“‘)(é)} (k! Sk, &SPk, )

ZE,;) é = m 3 S<l) kinaé = " " 3 64

10} {62'2(5) (57 9) 3k, &) SH(K,, €) e
in which

Sk, &) = [Py(i KLy, &) (K, E) — Pyli K &)Y, (k"mm /A,

SO, E) = [ (K& )Y, (KLE) — Y, (KL L)/, .

SOk, &) = [Py(i, kL, & )Py (i KL, €) — Py(iy K, )Py (i K, E)] /A,

SOk, E) = [T, (k& )Py (i K, E) = Y, (K E )Py (i KL E)] A,
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and
Ay = Py(iky,, &) (K, &ih) = Polisky,, &)Y (kG
Pk, &) = ‘733DVJ;L (k&) + CI3D Iy, (k&) (66)
Py (i, k,,, &) = C%DVYM (K3, &) +ellp Y, (k&)
In view of the first equation in Eq. (64), Eq. (62) can be rewritten as

{0y ={20¢E)} (i=1,2,...,n—-1). (67)
Setting ¢ = &; in Eq. (63) and then repeatedly using Eq. (67), we can obtain the following equation:
{Z)(@)}) =10"1{Z) (&)} (=1.2,....m), (68)
where
1
=11 5", (69)

i

Jj=
in which [0'"]is a 2 x 2 matrix. If i = n, Eq. (68) then becomes

{R,ﬁ,’)(ﬁn)}:[Qﬁ) o { ; (éo)} (70)
0 o oWl o

From the second equation in Eq. (70), we have

ol =o. 7l

Eq. (71), a transcendental equation, is just the eigenequation, from which a series of positive real roots

w, (m=1,2,...,00) can be obtained. After w,, (m=1,2,...,00), arranged in an ascending order, have been
obtained, Eq. (63) can be rewritten in the following form by virtue of Eq. (68):

{RS)(@} _ [Sﬁ?(k;@ S{a (k¢ V>] lgia” Qi"z”] {an”(éo)} (72)
@) [siwke shmollon” oL o [
Then from the first equation in Eq. (72), we derive

RY (&) = [0 s1 (k) + 05 Sk, &) R (E)- (73)

In Eq. (73), R\ (&) is a common constant for each layer, which can be taken as R'V(&,) = 1 in the cal-
culation. Thus R“)(f) is determined completely. Substituting Eq. (57) into Eq. (55) leads to

S R0E[5D 1 2(0)] = A0 T - g O T, (14)

m=1

By virtue of the orthogonal properties of Bessel functions, it is easy to verify that Rf,’;) (¢) has the following
properties (Yin and Yue, 2002):

Ci—

where 5,,,1 is the Kronecker delta, and

130 i) 2_”?C(Si3>D (i) =(0)
T 22 deg R)(©)| — =2 [R)(©O] +p

m

8]
—
e
=
/;/
e
~—r
=
S}
——
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Utilizing Eq. (75), we can derive the following equation from Eq. (74):

d’Q,,(z)
dz? +

(j)i.Qm(‘E) = qm(T) (m = 1727 L} 00)7 (77)
where

4n(7) = 41 (D) + L3l (T), 41, (7) = Lo (7) + Lan, (7)

Zp / éfl R(l )dé/‘]ma

Si—

Zp éf; (OR(E )dé/Jm-
=1 ie

The solution of Eq. (77) is

m m

(1) = 2,(0) cos ot + 2O Gin ooz 1! / gu(p) sin o (z — p) dp. (79)
0
Utilizing Eqgs. (49), (57) and (34), we have

> RY(©2(0) = u (&) = £ (©)pe(0) = £ (&), (0) = £ (E)n(0),

" (80)
D R (24(0) = v (&) = £(€)po(0) = £7(8)p,(0) = £ (xi)(0).

By using Eq. (75), we can obtain ,,(0) and Qm(()) from Eq. (80),
Qm(o) = [1mpo(0) + [2mpn (0) + I3m’7(0) + 14m7

Qm(o) = ]1mp0(0) + 12mpn(0) + I3m’;/(0) + 15,,,,

where

Zp fuo )gg(g)deg/.;m, Zp / el (£)RY ( dé/ . (82)

Ci—

Notice that ﬁ(p) is involved in ¢,,(p) as shown in the first equation in Eq. (78). We apply the integration-
by-parts formula to perform the integration of the term involving #(p) in Eq. (79) and derive

| iw)sinon=pap
= —(0) sin ,t — 7(0)w,, cos W, + w,n(t) — © / n(p) sin w,(t — p) dp. (83)
0
Then the following equation can be obtained from Eq. (79),

Qm(f) = le(f) +I3m7](f) - 13mwm /0I ”(P) sin (Um(f _p) dp7 (84)
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where
Q,(0) . 1 [ .
Qi (7) = 2,(0) cos w,T + © sin wmerw—/ 41,(p) sinw, (1 — p)dp
m m JO
1
_ C;’” [17(0) sin w,, T + n(0)w,, cos w,,1]. (85)

Now we will determine 7(0), 77(0) and () by means of the electric boundary condition (12b) and the
electric potential continuity condition (13b). We first rewrite Eq. (22) as
o @ @) ) ou® 1
é{)ﬁ :%ué "‘Wau—é_ﬁn(é)’ (86)
&3 &3 &3
in which 4 can be obtained by virtue of Egs. (25), (49) and (57) as follows:

}jR (0) + /7)o (1) + A7 (Op, () + A7 (E)n (7). (87)

In view of Egs. (12b) and (13b), we integrate Eq. (87) at the interval [&;_1,&] (i=1,2,...,n) and then
summarize them. The following equation is then derived:

(1) = Kin(t +ZK2mm (88)

where

() = 6,(5) — Bo(e) ~ Kspole) — Kap, (0),
i (0 g 0 , ,
m:}j&%u Kl ge e [3@»ﬂW@”ﬂ—%m(£Q},

i=1 53 &y 83 l
K —Z”: &/@ R,,l;)(é)d§+£[Ri)(f)_R(i)(é )]
" i=1 S;i) Ci-1 ¢ Sgi) " m \5i=1 ) (89)
n (9) & (i) (i)
¢ K ¢ e
K3:Z{% f1é( )dé-i-%[l &) —f_ (51__)}}7
=1 (& Jén &
n (i & m .
1(4222{F v 5 5( )dé—l- d [ 0(g) - f2(1>(5”)}}.
i=1 3 Ci-1
From Eq. (88), we have
b = Kuie) + 3 Kl o
m=1
If T =0, by means of Eq. (81), we can determine 7(0) and #(0) from Eqgs. (88) and (90),
n(0) = ¥1(0) = 30 i Kon[115Po(0) + 155p,(0) + L]
Kl + Z;zoleZm[?am ’ (91)
i(0) = 11(Q) = 2 Kanll1nio(0) + Lan(0) + 1]

Kl + anoleZmI3m

Substituting Eq. (91) into Egs. (81) and (85), the constants £,,(0) and Qm(O) and the function Qy,,(7)
become known. Then substituting Eq. (84) into Eq. (88) leads to
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Y(t) = () + ZNZ,,, / 1(p) sin o, (z — p) dp, (92)

where

Y(x) = (0) = Y KouQun(7)
m=1
(93)
Nl :Kl +ZK2m]3ma N2m = _me2m13m-
m=1

It is noted that Eq. (92) is a Volterra integral equation of the second kind (Kress, 1989), of which ana-
lytical solutions can be obtained only for some special cases. Generally, numerical methods should often be
adopted. Recently, we have constructed a recursive formula by which Eq. (92) can be solved efficiently and
quickly (Ding et al., 2003b). After #(t) is obtained, the displacement, electric potential and stresses can then
be completely determined.

6. Numerical results and analysis

Example 1. In this example, we consider a homogeneous piezoelectric infinite hollow cylinder, of which an
analytical solution has been obtained by Ding et al. (2003a). The material is taken as PZT-4 (Table 1). In
the demonstration, we divide the cylinder into five layers (n = 5) when using the present method. The non-
dimensional inner radius, the radii of the interfaces as well as the outer radius are &, =0.5, .f% =0.625,
58 0 75, & =0.875, &4 = 1.0, respectively. The hollow cylinder, which is at rest at =0, i.e. uo)(f) =0,

=0 (i=1,2,...,n), is subjected to a sudden constant pressure at the inner surface. The boundary
condltlons are

po(t) =H(zr),  ps(r) =0, (94a)

¢V (&, 1) =0, ¢V (& 1) =0, (94b)

where H(-) denotes the Heaviside function.

Table 1
Elastic, piezoelectric and dielectric constants of piezoelectric materials
Material constant Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
PZT-4 BaTiO; PZT-5H BaTiO3 PZT-4
c11 (GPa) 139.0 150.0 126.0 150.0 139.0
12 (GPa) 77.8 66.0 79.5 66.0 77.8
c13 (GPa) 74.3 66.0 84.1 66.0 74.3
23 (GPa) 74.3 66.0 84.1 66.0 74.3
¢33 (GPa) 115.0 146.0 117.0 146.0 115.0
e31 (C/m?) -52 —4.35 —6.5 —4.35 -52
ex (C/m?) -5.2 —4.35 —6.5 —4.35 -52
es3 ( C/m) 15.1 17.5 233 17.5 15.1
£33 (x107° F/m) 5.62 15.04 13.0 15.04 5.62

p (x10* kg/m?) 7.5 5.7 7.5 5.7 7.5
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Non-dimensional time ¢

Fig. 2. Time histories of hoop stress oy at different locations in the homogeneous piezoelectric hollow cylinder.

The time histories of the non-dimensional hoop stresses at the inner surface (£ = 0.5), middle surface
(& =10.75), as well as outer surface (¢ = 1.0) are shown in Fig. 2. The results agree well with those presented
in Ding et al. (2003a). Thus, the validity of the present solution is clarified.

Example 2. Now we consider the dynamic responses of a five-layer infinite hollow cylinder (n = 5) with
& =0.5, £,=0.6, & =0.7, £3=0.8, {4, =0.9 and &5 = 1.0, respectively, subjected to a sudden constant
pressure at the inner surface. The material constants of each layer are listed in Table 1 (Adelman et al.,
1975a; Kharouf and Heyliger, 1994). The boundary conditions as well as other parameters all are the same
as those in Example 1.
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) e et
& 4
ﬁ 0 *‘U”\//\/MMW\/N\,/‘/\A interface 4
B
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E 2(2 |
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& o interface 2
g AN WA e
& 2T s
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S
D R

0 — inner

surface
2 T T T T T T T T T
0.00 2.00 4.00 6.00 8.00 10.00

Non-dimensional time 1

Fig. 3. Time histories of radial stress o, at the each surface of the five-layered piezoelectric hollow cylinder.
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Fig. 4. Time histories of hoop stress gy at the inner surface of each layer of the five-layered piezoelectric hollow cylinder.

The time histories of the radial stress o, at the inner and outer surfaces as well as at each interface are
shown in Fig. 3. From the curves, we find that the non-dimensional radial stress at the inner surface keeps
—1 while that at the outer surface keeps zero. Thus, the calculated results satisfy the prescribed mechanical
boundary conditions, thus the correctness of the numerical results is clarified in this respect.

Figs. 4 and 5 depict the time histories of the hoop stress gy at the inner and outer surfaces of each layer,
respectively. It can be seen that in the same layer, the amplitude of ¢, at the inner surface is always larger
than that at the outer surface.

At the initial phase, the distributions of non-dimensional radial stresses o, at 1 = 0.05, 0.15, 0.25, 0.35, 0.4,
0.5, 0.6 and 0.7 in the five-layer piezoelectric hollow cylinder are shown in Fig. 6a and b. It is clearly seen that
the stress wave generates just when a constant pressure suddenly acts on the inner surface and then propagates

2
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O—M Y
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0 —M’\/\/
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Non-dimensional hoop stress Og

Non-dimensional time T

Fig. 5. Time histories of hoop stress oy at the outer surface of each layer of the five-layered piezoelectric hollow cylinder.
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Fig. 6. Distributions of non-dimensional radial stresses o, at different times in the five-layer piezoelectric hollow cylinder.

from the inner to the outer. When they arrive at the outer surface, it is reflected backward and propagates along
the opposite direction. We also find that when the stress wavefront arrives, it causes a strong discontinuity in
the stress. Fig. 7a and b depict the distributions of non-dimensional hoop stresses gy at © = 0.05, 0.15, 0.25,
0.35, 2.0, 4.0 and 8.0, respectively. In Fig. 7a and b, the discontinuity of the hoop stress also appears when the
stress wavefront arrives. We also notice that the hoop stress always jumps at each interface.

The distributions of the non-dimensional electric potential ¢ at different times (z = 0.25, 0.5 and 1.0) are
shown in Fig. 8. From the curves, we find that the calculated electric potentials at the inner and outer
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Fig. 7. Distributions of non-dimensional hoop stresses gy at different times in the five-layer piezoelectric hollow cylinder.
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Fig. 8. Distributions of non-dimensional electric potential ¢ at different times in the five-layered piezoelectric hollow cylinder.

surfaces both are zero, which are the right electric boundary conditions. The correctness of the numerical
results is further clarified.

7. Conclusions

In this paper, the principle of superposition is successfully applied to analyze the axisymmetric plane
strain dynamic problems for multilayered orthotropic piezoelectric infinite hollow cylinder. The quasi-static
solution is obtained in an explicit form by using the state space method. The derivation procedure is com-
pleted via operating the matrix of order two only in spite of the layer number. While in deriving the dy-
namic solution, the initial parameter method is introduced to deal with the continuity condition at the
interfaces, and the eigenequation is obtained in a very concise form also via operating the matrix of order
two only, from which the eigenvalues can be obtained quickly with a high accuracy.

From Figs. 3-5, we can clearly see the oscillations of radial and hoop stresses in a five-layer orthotropic
piezoelectric infinite hollow cylinder. The phenomena can be well explained by the wave motion viewpoint:
when a constant pressure suddenly applied onto the inner surface, the stress waves are then generated and
propagate from the inner to the outer. When they arrive at the outer surface (the interfaces), the reflected
(and transmitted) waves are further generated. It is the multiple reflection and transmission of the stress
waves that leads to the stresses oscillating in the multilayered hollow cylinder. It should be mentioned here
that the numerical results for a five-layer hollow cylinder in Example 2 have been obtained very quickly in
our calculation. So, the present method provides an effective way for analyzing the transient responses of
the laminated infinite piezoelectric hollow cylinders.
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